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Abstract This study presents the dual reciprocity boundary element (DRBEM) solu-
tion of Brinkman–Forchheimer-extended Darcy model in a porous medium containing
an incompressible, viscous fluid. The governing dimensionless equations are solved
in terms of stream function, vorticity and temperature. The problem geometry is a unit
square cavity with either partially heated top and bottom walls or hot steps at the mid-
dle of these walls. DRBEM provides one to obtain the expected behavior of the flow in
considerably small computational cost due to the discretization of only the boundary,
and to compute the space derivatives in convective terms as well as unknown vorticity
boundary conditions using coordinate matrix constructed by radial basis functions.
The Backward-Euler time integration scheme is utilized for the time derivatives. The
decrease in Darcy number suppresses heat transfer while heat transfer increases for
larger values of porosity, and the natural convection is pronounced with the increase
in Rayleigh number.
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1 Introduction

Natural convective heat transfer in a porous medium has taken the great deal of interest
in recent years due to its importance in many engineering applications such as packed
bed reactors, drying processes, electronic cooling, geothermal energy systems, thermal
insulation.

A chemical reaction between a foreign mass (e.g. porous surface) and the fluid
occurs in many chemical engineering processes. The diffusion and chemical reac-
tion cause buoyancy effects resulting with heat and mass transfer in porous media.
These processes in a porous medium have industrial applications such as the polymer
production, food processing and synthesis of ceramic materials.

There are lots of studies considering different models of porous medium fluid flows.
Theoretical and applied explanation details can be found in the books [14,15].

In the literature, most of the numerical studies are concentrated on the flow models
for porous medium such as Brinkman-extended Darcy and/or Brinkman–Forchheimer-
extended Darcy model (which is also mentioned as non-Darcy flow model). Brinkman
viscous terms are included in both models, but only the quadratic inertial terms are
added in the latter model. The importance of inertial terms is having a stabilization
influence on the fluid flow and heat transfer due to the increase in inertial terms
corresponding to the decrease in Darcy number.

On Brinkman-extended Darcy model (BDM), Das et al. [5] focused, and used the
finite element method (FEM) with isoparametric, quadrilateral elements for stability.
Using an iterative finite difference scheme (FDM) with uniform node distribution,
Pakdee et al. [19] also studied the same model. Jecl et al. [6] investigated modified
BDM for natural convection flow in a porous square cavity saturated with a non-
Newtonian fluid utilizing the boundary element method (BEM).

The Brinkman–Forchheimer-extended Darcy model (BFDM) is studied both exper-
imentally and numerically by Beckermann et al. [2] in which control-volume method
with SIMPLER algorithm is used. Nithiarasu et al. [16] solved BFDM with a semi-
implicit time scheme with Galerkin’s weighted residual method and a pressure-velocity
correction procedure. In this study, 41 × 41 nonuniform grids are used, and BDM is
also studied analyzing the variable porosity. Utilizing the Galerkin’s finite element
method (FEM) with a correction algorithm, Nithiarasu et al. [17] also investigated
the effect of porosity on natural convective flow and heat transfer based on BFDM
model. Bhuvaneswari et al. [3] examined the influence of aspect ratio on the flow and
heat transfer in a differentially heated porous enclosure modeled by BFDM employ-
ing finite volume method (FVM) with SIMPLE and a projection algorithm to handle
pressure. With the same method on a specified grid distribution, Chen et al. [4] pre-
sented BFDM in a wavy porous enclosure. Also, in a two-sided lid-driven porous
cavity, mixed convection flow for BFDM is investigated using multigrid approach
based on FVM with SIMPLE algorithm in [11]. In a rotating, differentially heated
porous enclosure, Saleh et al. [22] considered the BFDM applying the finite differ-
ence schemes both in time and space. They figured out the effect of rotational speed
on heat transfer. Lam et al. [12] analyzed the heat transfer and entropy generation in a
fluid-saturated porous medium with two heat sources on top and bottom walls using
the streamline upwind Petrov-Galerkin based FEM and 101× 101 grids. Karimi-Fard
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et al. [7] and Al-Farhany et al. [1] have solved the double-diffusive natural convection
in a porous medium in the same model utilizing finite volume method with SIMPLE
and a projection algorithm to handle pressure.

Sarler et al. [23] solved Darcy-Brinkman model by DRBEM using the augmented
scaled thin plate splines in different shape function boundary elements analyzing
the various node distributions. Khashan et al. [10] investigated the thermal non-
equilibrium model taking into account the Forchheimer terms utilizing FVM with
SIMPLEX algorithm to handle the pressure equation. Li et al. [13] concentrated on
a channel with staggered porous blocks modelled by Brinkman–Forchheimer equa-
tions. They considered the thermal conductivity ratio between the porous blocks as
well as porous block height using the FVM with SIMPLER algorithm. In different
forms of the porous models, Khanafer et al. [9] observed the behavior of the flow in a
wavy enclosure using FEM in nine node quadrilateral elements with bi-quadratic inter-
polation functions. In a similar problem geometry, Kumar et al. [21] also presented
the Forchheimer-extended Darcy model for a wide range of physical parameters with
FEM.

In this paper, the DRBEM is used to solve Brinkman–Forchheimer-extended Darcy
model in a porous medium in terms of stream function, vorticity and temperature
iteratively. The boundary-only nature of DRBEM provides one to obtain the results at
a small computational expense. To the authors’ knowledge, this model is not solved
in stream function, vorticity and temperature variables by using DRBEM.

2 Mathematical model equations

The two-dimensional, unsteady, laminar flow of a Newtonian, incompressible, viscous
fluid is considered. Viscous dissipation is neglected. The physical properties of the fluid
are constant except the density variation following from Boussinesq approximation.
The porous medium is homogeneous and isotropic. Also, the fluid, and the solid matrix
are in local thermal equilibrium. The governing equations in terms of the velocity
u = (u, v), pressure p and temperature T are written as [18]

∇.u = 0 (1a)

μe

ρ
∇2u = 1

εp

∂u
∂t
+ 1

ε2
p

u.∇u + 1

ρ
∇ p + μ

ρκ
u+ cF√

κ
|u|u+ gβ(T − Tc) (1b)

αe∇2T = σ ∂T

∂t
+ u.∇T (1c)

whereμe is the viscosity in Brinkman model,μ is the dynamic viscosity of the fluid, ρ
is the density of the fluid, εp is the porosity of the porous medium, κ is the permeability
of the porous medium, |u| = √u2 + v2, g is the gravitational acceleration vector, β is
the thermal expansion coefficient, Tc is the cold wall temperature, αe = ke/(ρcp) f is
the effective thermal diffusivity with the effective thermal conductivity ke = εpk f +
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(1− εp)ks of the porous medium and specific heat cp, and [14]

cF = 1.75(1− εp)

dp ε3
p

and κ = d2
p ε

3
p

150(1− εp)2
, (2)

are the form coefficient and the permeability of the porous medium, respectively,
with the solid particle size dp in a porous medium. Notice that the heat capacity

ratio σ = εp(ρcp) f + (1− εp)(ρcp)s

(ρcp) f
is taken as 1 as well as the same thermal

conductivity is taken for the fluid and solid matrix (ke = k f = ks is taken, so is
ke = k f = ks and αe = α f = α) in which subscripts f and s refer to fluid and solid,
respectively. Also,μe = μ is considered accordance with the experimental data [2,6].

In order to make Eq. 1 dimensionless, the non-dimensional parameters are defined
as

x ′ = x

L
, y′ = y

L
, u′ = uL

α
, v′ = vL

α
, (3)

p′ = pL2

ρα2 , t ′ = tα

L2 , T ′ = T − Tc

Th − Tc
, (4)

where L is the characteristic length, Th is the temperature of the hot wall. Substituting
these variables in Eq. 1, and then dropping the prime notation, we obtain

∇.u = 0 (5a)

Pr

εp
∇2u = 1

εp

∂u

∂t
+ 1

ε2
p

(
u
∂u

∂x
+ v ∂u

∂y

)
+ ∂p

∂x
+ Pr

Da
u + C f√

Da
|u|u (5b)

Pr

εp
∇2v= 1

εp

∂v

∂t
+ 1

ε2
p

(
u
∂v

∂x
+v ∂v

∂y

)
+ ∂p

∂y
+ Pr

Da
v+ C f√

Da
|u|v−Ra PrT (5c)

∇2T = ∂T

∂t
+ u

∂T

∂x
+ v ∂T

∂y
. (5d)

where C f = 1.75√
150 ε1.5

p

.

The definitions of velocity components in terms of stream function are u =
∂ψ/∂y, v = −∂ψ/∂x satisfying the continuity condition. Using these in the definition
of vorticity w = ∇ × u gives the stream function equation. The cross-differentiation
and subtraction of Eqs. (5c) and (5b) give the vorticity transport equation. Thus, the
dimensionless governing equations in terms of stream function, temperature T and
vorticity w (w = ∂v/∂x − ∂u/∂y) are deduced as

∇2ψ = −w (6a)

∇2T = ∂T

∂t
+ u

∂T

∂x
+ v ∂T

∂y
(6b)

123



J Math Chem (2015) 53:911–924 915

x

y

∂T/∂n = 0

∂T/∂n = 0

∂T/∂n = 0

∂T/∂n = 0

T c
=
0

T c
=
0

Th

Th

ha

v

u

g

x

y

∂T/∂n = 0

∂T/∂n = 0

∂T/∂n = 0

∂T/∂n = 0

T c
=
0

T c
=
0

Th = 1

Th = 1

v

u
g

hb

(a) (b)

Fig. 1 Problem configuration. a Heated parts on top and bottom. b Heated steps on top and bottom

∇2w = 1

Pr

∂w

∂t
+ 1

εp Pr

(
u
∂w

∂x
+ v ∂w

∂y

)
+ εp

Da
w

+ C f εp√
Da Pr

(
v
∂|u|
∂x
− u

∂|u|
∂y
+ |u|w

)
− εp Ra

∂T

∂x
, (6c)

and the non-dimensional parameters Darcy number Da, Rayleigh number Ra and
Prandtl number Pr are [14]

Da = κ

L2 , Ra = gβΔT L3

να
, Pr = ν

α
. (7)

Here, ν = μ/ρ is the kinematic viscosity and ΔT = Th − Tc.
The problem geometries are depicted in Fig. 1. Two heated (Th = 1) parts and

square hot obstacles are placed on the top and bottom walls. Jagged walls are adiabatic
while the left and right walls are cold walls Tc = 0. No-slip boundary conditions are
imposed on each wall (u = v = ψ = 0).

3 DRBEM solution

DRBEM is a boundary only discretization method, and gives the solution directly on
the boundary, and at some required interior points. DRBEM treats all the terms other
than Laplacian as inhomogeneity in the equations, and thus, the fundamental solution
of Laplace equation is made use of as the case of BEM solutions of Poisson’s equa-
tion. The resulting system matrices of equations are generally small in size compared
to all other domain discretization methods. This provides a computationally cheap
procedure. Also, DRBEM has the advantage of computing all the space derivatives in
the equations and unknown vorticity boundary values by using DRBEM coordinate
matrix.
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The terms on the right hand side of Eq. (6) are treated as inhomogeneous terms in
the application of DRBEM, and are approximated by [20]

bi ≈
NI+NB∑

j=1

α j fi j , (8)

where NI is the number of arbitrarily located interior points, NB is the number
of boundary points, α j ’s are sets of initially unknown coefficients, and the fi j ’s
are approximating functions in a relation with particular solution ∇2ûi j = fi j .
fi j ’s are radial basis functions (RBFs) which depend on the radial distance ri j =√
(xi − x j )2 + (yi − y j )2 in which i and j are the indices indicating source (fixed)

and the field (variable) points, respectively. Radial basis functions may be chosen as
polynomials, splines, Gaussian, or multiquadrics.

Multiplication of both sides of differential Eqs. (6a)–(6c) (∇2ϕ = ∑NI+NB
j=1

α j∇2ûi j , where ϕ stands for ψ, T or w) by the the fundamental solution of Laplace
equation (u∗ = − ln(r)/(2π)), and integration over the domain gives the integrals
over the domain Ω as

∫
Ω

(∇2ϕ)u∗dΩ =
NB+NI∑

j=1

α j

∫
Ω

(∇2û j )u
∗dΩ. (9)

Then, the key point of DRBEM is to use the Divergence theorem for the Laplacian
term on both sides of equation providing one to obtain all integrals on the boundary
as

ciϕi+
∫
Γ

ϕ
∂u∗

∂n
dΓ−

∫
Γ

∂ϕ

∂n
u∗dΓ=

NB+NI∑
j=1

α j

(
ci ûi j+

∫
Γ

û j
∂u∗

∂n
dΓ−

∫
Γ

∂ û j

∂n
u∗dΓ

)
,

where ci = 0.5 if the boundary Γ is a straight line and i ∈ Γ , and ci = 1 when node
i is inside.

The boundary is discretized by NB linear elements. The boundary integrals are
evaluated over each element by a numerical quadrature, and then an assembly pro-
cedure for all elements is achieved. Thus, Eqs. (6) may be written in a matrix-vector
form as

Hϕ −Gϕq = (HÛ−GQ̂)F−1b, (10)

where the entries of the matrices H and G contain the boundary integrals of the funda-
mental solution u∗, and the normal derivative of u∗, respectively, F is the coordinate
matrix constructed from the RBFs fi j ’s, Û and Q̂ matrices have the entries computed
by the particular solution ûi j and its normal derivative q̂i j = ∂ ûi j/∂n. The coordinate
matrix F is also used to compute the space derivatives in inhomogeneous terms, e.g.

∂ϕ

∂x
= ∂F
∂x

F−1ϕ,
∂ϕ

∂y
= ∂F
∂x

F−1ϕ. (11)
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Utilizing the DRBEM with Backward-Euler finite difference in the time derivatives,
the matrix-vector form of Eqs.(6) is obtained as

Hψm+1 −Gψm+1
q = −Swm (12a)(

H− 1

Δt
S− SM

)
T m+1 −GT m+1

q = − 1

Δt
ST m (12b)

(
H− 1

PrΔt
S− 1

εp Pr
SM− 1

εp Da
S
)
wm+1 = − 1

PrΔt
Swm

+ c f εp√
Da Pr

S
(

K + |u|m+1
d wm

)

−Sεp RaDxT m+1, (12c)

where S = (HÛ − GQ̂)F−1, Dx = (∂F/∂x)F−1, Dy = (∂F/∂y)F−1,

M = um+1Dx + vm+1Dy, um+1 = Dyψ
m+1, vm+1 = −Dxψ

m+1, |u|m+1 =√
(u2)m+1 + (v2)m+1, K = ([v]m+1

d Dx − [u]m+1
d Dy)|u|m+1, with the subscript d

corresponding to diagonal, and m is the iteration level.
The unknown vorticity boundary conditions are also computed with the help of

coordinate matrix F, i.e.

w = ∇ × u = ∂v

∂x
− ∂u

∂y
= Dxv − Dyu, (13)

which is used at each time iteration m.
The system of Eqs. (12a)–(12c) are rearranged with the insertion of the known and

unknown boundary information, and the reduced form of the systems Ax = b are
solved by Gaussian elimination with partial pivoting at each time iteration. At initial
time,w0 and T 0 are taken as zero everywhere except on the boundary. Once the stream
function is found, the velocity components, and thus the magnitude of the velocity,
are computed, and then their boundary values are inserted. The velocity components u
and v are made use of in the energy and vorticity equations, respectively. The iteration
continues until the criterion [8]

∥∥ψm+1 − ψm
∥∥∞∥∥ψm+1

∥∥∞ +
∥∥T m+1 − T m

∥∥∞∥∥T m+1
∥∥∞ +

∥∥wm+1 − wm
∥∥∞∥∥wm+1

∥∥∞ < ε (14)

is satisfied with a tolerance ε = 10−5.
Average Nusselt number through the top and bottom heated walls is computed,

respectively, by

Nut =
∫

top

∂T

∂n
ds, Nub =

∫
bottom

∂T

∂n
ds, (15)

where ∂T/∂n is the normal derivative of T , and ds = dx or ds = dy.
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Table 1 Validation case with
ε = 0.4, Pr = 1 Da Ra c N , L Nu [16]

10−2 103 0.001 80,625 1.00 1.01

104 0.02 80,625 1.405 1.408

105 0.065 80,625 2.987 2.983

10−4 105 0.007 80,441* 1.065 1.067

106 0.0077 80,441* 2.55 2.55

107 0.0054 80,441* 7.81 7.81

10−6 107 0.0037 88,529* 1.078 1.079

108 0.0037 88,529* 2.99 2.97

109 0.0025 88,529* 11.45 11.46

Table 2 Grid analysis with
respect to Nut keeping
Ra = 105, c = 0.0035

Case 1 (NI = 729) Case 2 (NI = 815)

NB Da = 10−2 Da = 10−3 NB Da = 10−2 Da = 10−3

80 3.8240 3.1616 96 3.1314 2.4906

104 3.8783 3.2545 144 3.1764 2.5767

128 3.9112 3.3170 192 3.2023 2.6226

152 3.9362 3.3635 240 3.2137 2.6507

4 Numerical results

In the computations, multiquadric radial basis function f = √c2 + r2 with shape
parameter c, and 8-point Gaussian quadrature is used in the construction of H and G
matrices. Prandtl number is fixed as Pr = 0.71. Natural convection flow behavior is
visualized in terms of streamlines, isotherms, and vorticity contours for various Da
and Ra. In some cases, once the vorticity is obtained, a relaxation parameter is used as
wm+1 ← γwm+1+ (1−γ )wm for accelerating the convergence in which 0 < γ < 1.
Although there are some studies optimizing the value of c, we determine the value of
c (in the flow behavior) by trial and error in terms of convergence.

As a validation case, the proposed numerical scheme is also applied to the problem
defined in [16], and the average Nusselt number values through the hot wall is compared
in Table 1. In this table, Δt = 0.1 = γ is used in all cases, and the grid distribution
for the results with Da = 10−2 is uniform boundary nodes with Gauss-Chebyshev-
Lobatto (GCL) interior points while the results denoted by ‘*’ are obtained by GCL
nodes on both boundary and interior. Uniform node distribution with small number of
boundary and interior points gives also satisfying results for reasonable values of Ra,
but the number of nodes should be increased for large values of Ra. Therefore, we
used the non-uniform grid distribution in this Table, and these type of nodes endure
oscillations at large Ra, and gives better results than uniform nodes. As is seen, our
results are in good agreement with the results in reference [16] at a small computational
expense.

In the following both problems, the uniform grid distribution on the boundary and
the GCL nodes in the interior are adopted. A grid analysis is also given in Table 2
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Fig. 2 Ra = 105, εp = 0.6, c = 0.0035

showing the dependence of average Nusselt numbers on the number of boundary
elements through the heated top walls of the cavities. Regarding this table, in general,
NB = 128 linear boundary elements with NI = 729 interior grid points in Case 1,
and NB = 144 linear boundary elements with NI = 815 interior nodes in Case 2
are used. Larger values of Ra require more boundary elements and interior nodes.
Furthermore, the number of boundary elements and interior nodes also change as the
size of the heaters are altered.

4.1 Case 1: Partially heated top and bottom walls

In this case, ha is taken as 1/3 (Fig. 2) and 1/7 (Fig. 3).
In Fig. 2, the center of two symmetric, counter-rotating cells of streamlines in the

direction of gravity expands, and form boundary layers through the top and bottom
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wT
h a =

 1
/3

h a =
 1

/7
ψ

Fig. 3 The change in the size of the partial wall on top and bottom with εp = 0.6, Ra = 107, Da =
10−4, γ = 0.5, c = 0.0055, max |ψ | = 13.8, max |ψ | = 11.9, NB = 248, NI = 961
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5

ψ

Fig. 4 Darcy variation Pr = 0.71, Ra = 105, εp = 0.6, Δt = 0.1, c = 0.003
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Fig. 5 Rayleigh variation Da = 1e − 4, Pr = 0.71, εp = 0.6, Δt = 0.1, N = 144, K = 815(Ra =
105, 106(γ = 1.0)), N = 192, K = 1455(Ra = 107(γ = 0.4), 108, γ = 0.05)

walls as Da decreases. This points to the decrease in the flow circulation. In other
words, the fluid flows slowly. Isotherms becomes nearly perpendicular to adiabatic
walls, and symmetrically intensified around the heated parts at small Da numbers
while the heat rises up (convection) from bottom heated wall to top one at large Da
values. Vorticity almost becomes stagnant at the center as Da decreases.

With an increase in Ra when Da = 10−4, ha = 1/3 (Fig. 3), fluid circulation
increases, and the boundary layer formation for streamlines between symmetric cells
is pronounced. The center of streamlines takes a sharp form in the direction of gravity.
Isotherms exhibit a natural convective behavior for large values of Ra due to the
dominance of buoyancy effect. Vorticity also verifies the intensity of convection with
the emerge of two symmetric circulations on bottom heated wall. In Fig. 3, the change
in the size ha = 1/7 of the heated wall is also observed. Not much variation is seen on
flow behavior, but a little bit fluid velocity, and thus the natural convection, decreases
since the heated parts are decreased.
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wT
h b =

 1
/3

h b =
 1

/5
ψ

Fig. 6 Da = 10−5, Ra = 108, c = 0.003, γ = 0.5, Nut = 3.22, Nut = 5.47, NB = 192, NI =
983, 1455

4.2 Case 2: Two heated steps on the top and bottom walls

Instead of heated parts, two heated steps are located at the top and bottom walls. The
aspect ratio which is the ratio of the length of the obstacle to the cavity height is
considered as hb = 1/5.

In Fig. 4, the center of each streamline bundle expands giving stagnant regions
symmetrically located on both parts of the cavity separated by obstacles. Thus, the
fluid movement slows down when Da gets smaller due to the decrease in permeability
of the porous medium. For large values of Da, temperature gradient clusters through
left and right sides of bottom heated step with a similar formation through the left and
right up corners of the cavity. This is an evidence of dominance of convection in the
cavity for large values of Da. However, heat transfer is suppressed as the conductive
heat transfer increases with the decrease in Darcy number. Vorticity becomes stagnant
at the center forming boundary layers through the walls for small values of Da.

Figure 5 shows that the centered circulations in streamlines expand horizontally for
large values of Ra, and boundary layers are formed for streamlines between symmetric
cells as well as through the left and right walls. The expected behavior as natural
convection is observed in isotherms when Ra is increased. Isotherms are forced to be
parallel to adiabatic walls. Vorticity is not affected much with an increase in Ra. When
the size of the step is decreased (Fig. 6), convective behavior of the fluid becomes more
clear. All contours take a similar form as in Fig. 3 for ha = 1/7.

Average Nusselt number changes in a similar way on the top and bottom obstacles
as can be seen from Fig. 7 (Ra = 106). For small values of Darcy number (Da ≤
10−4), heat transfer is suppressed, and the conductive heat transfer is pronounced for
all values of porosity (average Nusselt number tends to be constant). The increase
in convective heat transfer emerges with the increase in Darcy number due to the
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Fig. 7 Average Nusselt number variation through top and bottom obstacle walls

increasing permeability of the porous medium resulting with faster flow. Further, for
a fixed Darcy number, the increase in average Nusselt number as porosity increases
is observed. This is due to the fact that the dimensionless velocity increases while the
inertial (Forchheimer) and non-linear drag (u.∇u) terms become less significant as
porosity increases. Moreover, heat transfer at the bottom step is higher than the top
step since the two symmetric, counter rotating cells are met at the bottom step for large
values of Da. Therefore, the fluid circulation around the bottom step becomes much
higher than the top step. In other words, much more heated flow circulates through
the bottom step.

In both cases, the effects of Darcy number, Rayleigh number and the porosity of the
porous medium on natural convection are in accordance with the natural convection
flow behavior investigated in [12,16].

5 Conclusion

In this study, the Brinkman–Forchheimer-extended Darcy model is numerically inves-
tigated using DRBEM. DRBEM has the advantage of resulting in small sized algebraic
systems due to its boundary only nature. Even though the two different geometries are
studied, the main results are the same for both cases. The small values of Darcy number
Da and porosity εp have a suppressing effect on the fluid flow and heat transfer, and
the increase in Ra causes the heat transfer to be convective.
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